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Figure 1: Challenges in temporal segmentation of egocentric videos. 1st row: Significant change in the scene due to head
movement but there is no ground truth boundary. 2nd row: Segmentation boundary but no significant change in visuals.

ABSTRACT
The long and unconstrained nature of egocentric videos makes

it imperative to use temporal segmentation as an important pre-

processing step for many higher-level inference tasks. Activities

of the wearer in an egocentric video typically span over hours

and are often separated by slow, gradual changes. Furthermore,

the change of camera viewpoint due to the wearer’s head motion

causes frequent and extreme, but, spurious scene changes. The

continuous nature of boundaries makes it difficult to apply tradi-

tional Markov Random Field (MRF) pipelines relying on temporal

discontinuity, whereas deep Long Short Term Memory (LSTM) net-

works gather context only upto a few hundred frames, rendering

them ineffective for egocentric videos. In this paper, we present a

novel unsupervised temporal segmentation technique especially

suited for day-long egocentric videos. We formulate the problem

as detecting concept drift in a time-varying, non i.i.d. sequence of

frames. Statistically bounded thresholds are calculated to detect

concept drift between two temporally adjacent multivariate data

segments with different underlying distributions while establishing

guarantees on false positives. Since the derived threshold indicates

confidence in the prediction, it can also be used to control the

granularity of the output segmentation. Using our technique, we

report significantly improved state of the art f-measure for daylong

egocentric video datasets, as well as photostream datasets derived
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1 INTRODUCTION
Egocentric videos are captured from the cameras typically har-

nessed on wearer’s head, recording first person perspective in a

hands-free, always-on manner. This makes captured videos ex-

tremely long (often spanning the whole day), and highly redundant.

The natural head motion of the camera wearer causes fast and

extreme changes in the viewpoint. The wild camera ego-motion,

coupled with the unconstrained environment in which such videos

are usually captured, makes the videos extremely hard to watch, and

even more challenging to process by traditional computer vision

techniques. This has motivated the computer vision community to

develop novel techniques designed for analyzing egocentric videos

[2–4, 6, 9, 10, 21, 22, 38–46, 49–51, 54].

The focus of this paper is on temporal video segmentation of

daylong egocentric video streams. Due to the task’s utility as a

pre-processing for many higher-level inference problems like in-

dexing and summarization, the problem is a well-researched area
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Methods Unsupervised

Multivariate Scalability to Customized Works with

Data Long Sequences Granularity Extremely Shaky Videos

TCFPN [17] ✗ ✓ ✗ ✗ ✗

ADWIN [7] ✓ ✗ ✓ ✓ ✓

SR-Clustering [14] ✓ ✓ ✗ ✓ ✓

CES [12] ✓ ✓ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of state of the art with our method on various criteria important for applicability to egocentric videos.

in computer vision: both for the first person [7, 20, 42, 43, 56] as

well as third person videos [28, 52, 57].

Common techniques for temporal segmentation of third person

videos are based on either MRF formulation or deep neural network

(DNN) with RNN/LSTM units. The former techniques [27] look

for temporal discontinuities, and hence fail for egocentric videos

when the segment boundaries are often slow with gradual changes

in the scene. DNN based techniques [6, 15, 16, 36] use recurrent

connections to capture the temporal context and do not scale well

for long segments. To better understand the scales involved, a 10

minutes video segment captured at 30 frames per second (FPS)

contains 18000 frames. Even with sophisticated back-propagation

techniques [32], it is hard to train RNNs for such a long sequence.

Multi-scale network designs [15, 17, 30] are possible but compro-

mise temporal resolution to gain long term context. Fig 1 shows

few challenges in the temporal segmentation of egocentric videos.

For temporal segmentation of egocentric videos, researchers

have suggested to use both generic (e.g. RGB, Optical flow, etc.)

as well as egocentric specific cues (e.g. hand pose, handled object,

etc.). However the techniques are often limited to either short seg-

ments [24] or segmentation based on long term activities but with

short term signatures [6, 42, 43]. For example, to detect long term

‘walking’ activity, [43] independently classifies a video clip of 4

secs.

In this paper, we propose to formulate the problem of tempo-

ral segmentation as concept drift detection in multivariate time

series data. In a concept drift detection task, one maintains two

adjacent temporal windows of fixed size and estimate statistical

summary (e.g. average) of the two windows separately. If the sum-

mary is significantly different for the two windows, the algorithm

declares concept drift. The key challenges to use the formulation

for temporal segmentation are: (1) Choosing window length for the

statistical summary, as different activity/event lengths may require

different temporal windows, and (2) Choosing threshold to declare

a boundary, as real boundaries may have smooth visual changes,

whereas sharp head motion may cause significant visual changes

in non-boundary regions. We emphasize that the proposed formu-

lation can incorporate various other cues suggested for temporal

segmentation of egocentric videos viz optical flow, hand pose, and

other objects present in the scene, etc. Our primary contribution is

in suggesting a way to deal with smooth changes in the features at

the real boundaries compared to sharper changes at the spurious

boundaries as illustrated in Fig. 1.

Bifet and Gavalda [7] have suggested a technique, called ADWIN,

to segment i.i.d. univariate sequences. Their method maintains an

adaptive window, and for each of its various partitions into two sub-

windows, a threshold is calculated based upon the harmonic mean

of the length of the two sub-windows. A boundary is declared if the

difference of the statistical summaries of the two sub-windows is

larger than this threshold. The threshold is based on the Hoeffding’s

inequality and is valid for all probability distributions. ADWIN gives

probabilistic bounds on the boundary detection error and works

for univariate sequences with slow as well as abrupt changes.

In this paper, we propose a technique for concept drift detection

in multivariate, and non-i.i.d. sequences such as egocentric videos,

which can be used for temporal segmentation of such videos. Table 1

compares the key strengths of our approach with state of the art.

The specific contributions of this paper are as follows:

(1) To the best of our knowledge, we are the first to suggest for-

mulating the problem of temporal segmentation of extremely

long egocentric videos as detecting concept drift in a time series

data.

(2) We use a multivariate generalization of Hoeffding’s bound to

compute distribution invariant segmentation threshold for mul-

tivariate time series arising out of a given frame sequence.

(3) Hoeffding’s bound as such assumes i.i.d. samples and can not

be used for video sequences with a large correlation between

temporal neighbors. We suggest a simple heuristic of jump

factor to get around the problem.

(4) In our experiments on both day-long egocentric videos, as well

as benchmark photo-stream datasets, the proposed technique

successfully copes with two key egocentric specific challenges

viz continuous as well as extreme viewpoint variations, and

long segments. Our technique gives significantly improved f-

score of 59.44%, on HUJI [43], in comparison to current state of

the art of 45.70% by [12].

2 RELATEDWORK

Related Tasks: We note that the solution to action localization as

well as scene segmentation results in the temporal segmentation of

videos. Action localization refers to predicting the temporal bounds

of pre-specified action categories in an input video and researchers

have looked at the problem in both third person [5, 8, 11, 15, 18,

33, 36, 48], as well as the first person contexts [2, 6, 9, 10, 24, 26].

The above approaches are mostly supervised, whereas, our focus is

on unsupervised segmentation with no prior knowledge of output
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categories. Similarly, in a scene segmentation task, one is looking at

the boundaries separating two visually different scenes. In a scene

segmentation scenario the boundaries are usually sharp, which is

not true for the case of egocentric videos. Besides, wearer’s head

motion and the resulting sharp viewpoint changes may induce false

segmentation using a typical scene segmentation technique.

Deep Learning Techniques for Temporal Segmentation: In
the last decade, DNNs have emerged as a leading technique for

several computer vision problems, including the temporal video

segmentation [1, 12, 16, 20, 28, 43]. Temporal Convolutional Net-

works (TCNs) and its variants [16, 17, 30] harness local motion

information and use a hierarchy of temporal convolutional filters to

capture longer range patterns. [16] has proposed a hybrid of LSTM

and TCN to capture local motion as well as longer term context. [37]

uses Siamese Neural Network to detect context change between

two consecutive low-resolution images for egocentric photostreams.

[13] and [12] use LSTM based generative model to predict the future

context and track their evolution to decide the event boundaries in

continuous photostreams. [1] uses a self-supervised perceptual pre-

dictive model for contextual event segmentation. These methods do

not scale for hours long egocentric video segments, as the gradients

during backpropagation vanish beyond a few hundred-time steps

[32]. Besides, most of the techniques are supervised and require a

large amount of training data

Traditional Techniques for Temporal Segmentation: Tradi-
tional techniques for temporal segmentation of third person videos

[18, 23, 25, 47, 48, 55] utilize variations of fixed-size sliding win-

dow approach to generate the start and end times of all the events

in a video. These methods generally specify windows of different

sizes and slide them across a video to generate event proposals

of corresponding sizes. The overlapping proposals generated are

further processed to remove overlap and select only the most rele-

vant proposals. These methods are computationally expensive and

require a large scale space search to handle events with significantly

varying lengths, making them impractical for egocentric videos.

For instance, in Disney egocentric dataset, events can be less than

5 minutes (social interactions), to more than 30 minutes (lunch).

Adaptive Windowing: For variable length events one can use

adaptive windowing [7], which maintains the size of a window dy-

namically, by growing the window if the current event is long, and

drop a sub-window from the tail if an event boundary is detected.

[14] combines low-level features with high-level semantic labels,

and has suggested a graph cut technique to look for the trade-off

between the adaptive windowing [7] and agglomerative clustering.

3 PROPOSED APPROACH
We start this section with our theoretical contributions. Since the

target of this paper is detecting context drift in a stream of video

frames, represented as vectors in Rd , we first extend the standard

Matrix Hoeffding’s bound to the special case of d × 1 matrices,

which is our case. Then we use the derived bound for our novel

concept drift detection formulation in multivariate sequence. While

the discussion until here will assume the input samples (frames in

our case) to be independent, we end the section with details on how

to deal with temporally correlated data streams.

3.1 Multivariate Hoeffding’s Bound
The standard result for Hoeffding’s inequality for random symmet-

ric matrices may be given as the following [35]:

Lemma 3.1. Consider a finite sequence Zi of independent, random,
symmetric matrices with dimension d , and a sequence of fixed sym-
metric matrices Pi , such that E[Zi ] = 0 and Z 2

i ⪯ P2i , almost surely.
Here, ⪯ denotes the semi-definite order on symmetric matrices. Then
for all ϵ ≥ 0, we have:

P
(



∑i

Zi




s
≥ ϵ

)
≤ d exp

(
−ϵ2

2σ 2

)
, (1)

where σ 2 = 1

2





∑
i (P

2

i + E[Z
2

i ])



s , and ∥X ∥s denotes the spectral

norm of X .

For our case, we assume that E[Z 2

i ] ≈ Z 2

i , and Zi ≈ Pi , and

hence compute σ 2
as simply





∑
i P

2

i



s . Note that the result as such

is valid only for the symmetric matrices. We extend it to the vector

data-streams using the Jordan-WieLaudt theorem [53] as described

below. Consider a vectorX of sized×1. LetA be a block matrix such

thatA =

[
0 X

XT
0

]
. Since,A is a symmetric matrix with dimension

(d + 1) × (d + 1), we can use Eq. (1) for the matrix A, such that:

P
(



∑i

Ai




s
≥ ϵ

)
≤ (d + 1) exp

(
−ϵ2

2σ 2

)
, (2)

whereσ 2 =




∑
i A

2

i



s . It can also be shown that:A

2 =

[
XXT

0

0 XTX

]
,

and that A’s non-zero eigenvalues are ±1 times the singular values

of X . Hence ∥A∥s = ∥X ∥2, where ∥X ∥2 denotes the ℓ2 norm of the

vector X . Using the result in the equation above:

P
(



∑i

Xi




2
≥ ϵ

)
≤ (d + 1) exp

(
−ϵ2

2σ 2

)
, (3a)

where σ 2 = max

(



∑i
E
[
XiX

T
i

]



s
,





∑

i
E
[
XT
i Xi

]



s

)
(3b)

We use the above result to compute the bound for the average as:

P
(



 1n ∑

i
Xi





2
≥ ϵ

)
= P

(
1

n






∑

i
Xi





2
≥ ϵ

)
= P

(



∑i
Xi





2
≥ nϵ

)
≤ (d + 1) exp

(
−n2ϵ2

2σ 2

)
. (Using Eq. (3a))

Denoting X = 1

n
∑
i Xi , and σ

2 = σ 2/n

P
(


X


2 ≥ ϵ

)
≤ (d + 1) exp

(
−nϵ2

2σ 2

)
, (4)

Note that, if we assume the ℓ2 norm of X as 1, then XT
i Xi = 1, and

σ 2
as given in Eq. (3b) is always 1. We summarize our result below:

Theorem 3.2. Let X1, . . . ,Xn be d dimensional, independent ran-
dom vectors with E[X ] = 0, and unit ℓ2 norm. Then:

P
(


X


2 ≥ ϵ

)
≤ (d + 1) exp

(
−nϵ2

2

)
, (5)

where X denotes the observed mean of the samples.
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Figure 2: The block diagram describing major steps of the proposed approach. The ci represents the correlation coefficient
between the two frames. Please refer to the main paper for the details

3.2 Concept Drift Detection
We formulate the temporal segmentation of egocentric videos as

concept drift detection in a data stream. While in reality, the adja-

cent frames in the video stream are not conditionally independent

of each other, for this section, we will assume so. In the next section,

we describe our proposal to get around the assumption.

Concept Drift Detection Pipeline: For the concept drift detec-
tion, one maintains a sliding window,w , of dynamic length, n, over
the sequence. Consider a hypothesis that there is a segment bound-

ary at index t within the window, i.e., there is a particular segment,

w1, of length n1, from [0, t ) and another segment,w2, of length n2,
from [t ,n). We assume that the data in two segments is from two

unknown distributions with the observed mean values of µ̂1 and
µ̂2 respectively. If for a particular partition, the score (

µ̂1 − µ̂2

2)
exceeds a threshold ϵcut, we would like to declare a detected bound-
ary at t and the segment w1 will be dropped from w . Otherwise,

a new sample is added to the current windoww , and the process

is repeated for this new window of size n + 1. For each window

w , the boundary hypothesis is tested for all indices t ∈ w . Below

we describe a way to compute the threshold ϵcut in a principled

manner using multiple hypothesis testing.

Multiple Hypothesis Testing: One of the ways to calculate the

threshold ϵcut is by bounding the error rate for declaring incorrect

segment boundaries. Let us denote the observed mean of the seg-

ments, as µ̂1, µ̂2 respectively, and the true (unobserved) mean of

the current window as µw . We perform hypothesis testing with

µ̂1 = µ̂2 = µw as the null hypothesis. In other words, our null

hypothesis is that the two segments come from the same, but un-

known, distribution. Since we perform multiple tests in a single

window for various values of t , hence as per the multiple hypothe-

sis testing problem in the statistics, we would like to increase the

threshold of accepting the hypothesis by n (size of the window or

number of tests). For the hypothesis accepting the probability of δ ,
we would like to set the ϵcut such that:

P
(


µ̂1 − µ̂2

2 ≥ ϵcut

)
≤

δ

n
. (6)

The following lemma bounds the probability of difference in the

observed means:

Lemma 3.3. For a sequence of d-dimensional random vectors, {X1, . . .Xn },
sampled from an unknown but stationary probability distribution,
and its arbitrary partition into two subsetsw1, andw2, with lengths
n1, and n2, and observed means µ̂1, and µ̂2 respectively:

P
(


µ̂1 − µ̂2

2 ≥ ϵ

)
≤ 2(d + 1) exp

(
−mϵ2

4

)
, (7)

wherem is the harmonic mean of n1 and n2.

Proof. Consider the following three events:
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• Event A: 

µ̂1 − µ̂2

2 < ϵ .
• Event B: 

µ̂1

2 < k ϵ .
• Event C: 

µ̂2

2 < (1 − k )ϵ .

Here, k is a real number ∈ (0, 1). Further, from triangle inequality:



µ̂1 − µ̂2

2 ≤ 

µ̂1

2 + 

µ̂2

2 (8)

Assuming Events B and C hold:

⇒ 

µ̂1 − µ̂2

2 < k ϵ + (1 − k )ϵ (9)

⇒ 

µ̂1 − µ̂2

2 < ϵ . (10)

Hence, we can say that B ∩ C ⊆ A, which implies Ac ⊆ Bc ∪ Cc ,
where Sc denotes the complement of the set S . Therefore, from
union bound rule of the probability theory:

P
(
Ac

)
≤ P

(
Bc

)
+ P

(
Cc

)
(11)

Using event defintions as given above:

P
(

µ̂1 − µ̂2

2 ≥ ϵ

)
≤ P

(

µ̂1

2 ≥ k ϵ
)
+ P

(

µ̂2

2 ≥ (1 − k )ϵ
)

Using Theorem 3.2

P
(

µ̂1 − µ̂2

2 ≥ ϵ

)
≤ (d + 1) exp

(
−n1k

2ϵ2

2

)
+ (d + 1) exp

(
−n2 (1 − k )

2ϵ2

2

)
(12)

The equation above holds for all values of k . Hence, to get the tight-
est upper bound of the left hand side (l.h.s.) of the above equation,

we minimize the right hand side (r.h.s.) with respect to k . Here, we
note, and also done in [7], the r.h.s. is approximately minimized

when the exponents of the two terms are equal:

k2ϵ2n1 = (1 − k )2ϵ2n2 (13)

⇒ k =
√
(n2/n1)/(1 +

√
(n2/n1)) (14)

For this value of k , we have:

k2ϵ2n1 = (1 − k )2ϵ2n2 =
n2n1

(
√
n1 +

√
n2)2

ϵ2 (15)

≤
n2n1

(n1 + n2)
ϵ2 =

m

2

ϵ2, (16)

wherem is the harmonic mean of n1 and n2. We can use the values

to get the tightest upper bound for the l.h.s. of Eq. (12) as:

P
(


µ̂1 − µ̂2

2 ≥ ϵ

)
≤ 2(d + 1) exp

(
−mϵ2

4

)
(17)

Hence proved. □

Calculating ϵcut: As noted in Eq. (6), and the accompanying dis-

cussion, we would like to choose a value of ϵ which enables us to

declare a concept drift and hence the segment boundary if the ℓ2
norm of the difference of the observed means of the two segments

goes beyond ϵ . Further, the hypothesis testing framework allows us

to choose a value of ϵ according to the threshold of accepting the

hypothesis δ , which bounds the error rate for declaring incorrect

segment boundaries to δ . Since Lemma 3.3 bounds the probability

of difference of observed means exceeding ϵ , we can use it to choose

a value of ϵ (denoted as ϵcut hereon) such that we get the desired

upper bound on declaring the false boundary:

2(d + 1) exp *
,

−mϵ2
cut

4

+
-
≤

δ

n
(18)

⇒ ϵcut ≥

√
4

m
log

(
2n(d + 1)

δ

)
(19)

3.3 Handling Conditionally Dependent Data
It may be noted that the derivation of ϵcut using the Hoeffding’s

bound is valid only when the data is identically and independently

distributed (i.i.d). The assumption is invalid for egocentric video

stream where a frame is highly correlated with its temporal neigh-

bor. One way to resolve the problem is by making the data condi-

tionally independent. We observe that the correlation between the

frames decreases as the temporal distance between them increases.

We fix a threshold and declare two frames independent if the cor-

relation coefficient between them is below the threshold. This is

effectively sub-sampling the video.

We discover the optimal sub-sampling rate from the data itself.

For the first frame t in a given windowW , we find the frame t + kt
for which the correlation coefficient is less than a threshold ρc . The
process is then repeated from frame t = t + kt , and is continued

until the end of the window is reached. We select the sub-sampling

rate, k , as the average of kt for all t .
We further optimize the proposed pipeline by observing that we

do not really need to sub-sample the video, but the effect of sub-

sampling can be incorporated in the threshold ϵcut itself. Consider
an extreme scenario, when the original samples were conditionally

independent, but we introduced a severe correlation by duplicating

a sample r times. Note that in this case, the ground truth boundary

should not shift but the length of the segmentsW0 andW1 just

increases by r times. The harmonic mean m also increases by r
times, thus effectively decreasing segmentation threshold ϵcut, and
leading to over-segmentation. We compensate for the reduction in

ϵcut by updating the expression to:

ϵcut ≥

√
4k

m
log

(
2n(d1 + 1)

kδ

)
(20)

where k is the sub-sampling rate for un-correlating the input data,

as described earlier. Note that the exact choice of correct k is not

very critical, but merely helps to virtually sub-sample a video such

that the i.i.d. assumption starts to holds, by penalizing the effect to

ϵcut. However, the role of k becomes more important to normalize

videos taken at different temporal resolutions (frames per second).

The proposed approach avoids over-segmentation of a video by

adjusting the threshold for videos at the higher temporal resolution,

leading to higher accuracy in boundary prediction. Note that the

discussion above does not address the problems when videos are

captured at extremely low temporal solution, which we discuss

next.
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Figure 3: The segmentation granularity increases as we increase δ in our approach. The three rows in the figure show the
output from our approach at δ , 10−6, 10−4, and 10

−2 respectively, on the ‘Alireza Day 1’ sequence from Disney dataset. The bars
above each row indicates the time instance of frames chosen as a boundary, such that the length of the row shows the length
of the sequence.

3.4 Handling Photo-stream Data
Imagine we had a video, and have found an optimal sub-sampling

rate k at which the adjacent frames become conditionally indepen-

dent. Note that, any larger k will also satisfy the independence

constraint, but will lead to under-segmentation. We observe that

when the input is a photo-stream, the frames are indeed condition-

ally independent, but they would likely be independent (as per our

correlation coefficient criterion) even when we insert an additional

frame (by interpolating neighboring frames) in between. We believe

that our method underestimates the length of the segment in the

case of photo-streams due to the above reason. Therefore, for the

photo-streams, we suggest to look for the smallest number of k
frames, which when inserted in the photo-stream still keeps the

neighboring frames independent. We introduce these frames, or

feature vectors as the case may be, by simply averaging the fea-

tures of two consecutive frames. The process is continued until the

correlation coefficient of the feature vectors remains below a user

specified threshold.

However, similar to the way we handled correlated frames in the

videos, we do not need to make the actual addition of frames to the

dataset. We just need to know the length of the adaptive window,

when the frames will be added to the window. This new window

length is then used to modify the threshold. The modified threshold

used for the photo-stream is as follows:

ϵcut ≥

√
4

mk
log

(
2nk (d + 1)

δ

)
(21)

Fig. 2 shows the block diagram of the proposed approach and Algo-

rithm 1 in the supplementary material presents the pseudo-code.

4 EXPERIMENTS
We demonstrate the results of proposed approach on three ex-

tremely long egocentric video datasets, viz HUJI [42, 43], Disney

[19], and UTEgo [31, 34], as well as on the standard photo-stream

dataset, viz EDUB-Seg20 [14? ]. We give a detail description of the

datasets in the supplementary material. The proposed technique

is implemented on Matlab with system architecture comprising

Temporal Tolerance (seconds)

F-M
ea

su
re

Figure 4: The figure shows the F-Measure comparison be-
tween SOTA and proposed approach for different values of
temporal tolerance for the Disney dataset.

of Quadro P5000 GPU and Intel i7 processor with 4 cores (32 GB

RAM). It takes approximately 2 hrs (inclusive of feature extraction)

and approximately 8GB CPU RAM to segment 8 hrs long video.

4.1 Implementation Details
Feature Vector: For all the video datasets, we use the input at

5fps and use frame-wise AlexNet [29] features as used by SR-

Clustering [14]. However, for a fair comparison on the photo-stream

datasets, we use LSTM features similar to one used by [12]. How-

ever, since we operate in the streaming mode in our application,

instead of bi-direction features as suggested in [12], we use only

unidirectional features.

Frame Correlation Coefficient: As discussed earlier, to make the

frames independent for meeting the requirements of our theoretical

results, we use the notion of skip factor. The learned skip factor

requires a hyper-parameter correlation coefficient threshold, ρc to

declare the two frames independent. We have chosen ρc = 0.95 for

video datasets. However, we observe that LSTM features used for

the photo-stream datasets exhibit a high correlation. Hence, we use

ρc = 0.999 for the photo-stream datasets.

Granularity: Any segmentation problem is inherently dependent

upon the scale one is looking for. In our technique, the granularity

at which the user wants their video to be segmented can be con-

trolled by the δ . As seen in Fig 3, as the value of δ increases, the

number of segments increases, and boundaries are detected even

for smaller changes. Similarly, upon decreasing the value of δ , the
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0Hr 0Min 0Hr 30Min0Hr 10Min 0Hr 20Min

2Hr 30Min 2Hr 40Min 2Hr 50Min 2Hr 60Min

0Hr 40Min 0Hr 50Min 0Hr 60Min 0Hr 70Min

Ground Truth ADWINOurs CES

Figure 5: Temporal segmentation of long egocentric videos: The figure shows a qualitative representation of closeness of
boundaries predicted by the proposed approach, ADWIN [7], CES [12] to ground truth boundaries from specific portions of
Huji (first row), UTEgo (second row) and Disney (third row) datasets (better visualize in colors). Please see the text for details.

Ground Truth ADWIN CESOurs SR Clustering

0Hr 0Min 1Hr 20Min 2Hr 40Min 4Hr  0Min

0Hr 0Min 1Hr 54Min 3Hr 48Min 5Hr 43Min

Figure 6: Temporal segmentation of photo-stream data: The figure shows a qualitative representation of the closeness of
boundaries predicted by the proposed approach, ADWIN [7], CES [12] to ground truth boundaries from specific portions of
EDUB-Seg (first row), and Huji (second row). Please see the text for details.

number of segments decreases, corresponding to capturing large

heterogeneous context in a single event. In general application of

our technique, we expect that such a granularity could be taken as

feedback from the end-user. However, for comparing with bench-

mark datasets, we do not have such user-feedback available. Hence

we use average segment length as the proxy for the segmentation

granularity required. We define 2500-3000, 1600-2500, and 1000-

1600 frames per segment as our ranges for low, medium, and high

levels of granularity respectively.We set the δ for the corresponding

granularity as 10
−2
, 10
−4
, and 10

−6
respectively. Similarly, for the

photo-stream datasets of HUJI, UTEgo, Disney, and EDUB-Seg20,

we experiment with δ values of 10
−1
, 10
−3
, and 10

−7
for different

levels of granularity.

Boundary Tolerance: As proposed by [12], when dealing with

continuous boundaries in an egocentric video, there is an inherent

ambiguity in annotating the exact frame which should be marked as

the boundary, and many frames in the temporal vicinity could have

been marked as a boundary as well. Hence, penalizing an algorithm

for marking the exact frame as a boundary may not indicate the true

strength of the technique. [12] has proposed the use of temporal

tolerance, which allows a technique to be rewarded if it predicts a

boundary within a certain range of the ground truth. We adopt the

metric in our experiments and use a temporal tolerance (tol) of 2.5
minutes to calculate the performance (f-measure) of our technique.

As shown in Fig. 4, the boundary detection accuracy improves as

the value of temporal tolerance is increased.
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Methods HUJI UTEgo Disney

TCFPN [17] 4.18 2.50 3.56

ADWIN [7] 12.44 0.83 15.01

CES[12] 4.52 9.31 3.96

Ours 73.01 58.41 67.63

Table 2: F-Measure comparison on video datasets

Methods Features EDUB HUJI UTEgo Disney

TCFPN [17] CNN 19.26 2.37 1.37 3.84

ADWIN [7] CNN 35.37 44 11.47 23.21

CES [12] LSTM-Bi 69 45.70 36.19 61.40

SR-Clustering [14] CNN 49.93 44.06 9.44 55.81

Ours LSTM-uni 63.96 59.44 60.61 68.83

Table 3: F-Measure Comparison on photo-stream datasets

4.2 Evaluation Measure
We use the averaged F-measure to evaluate our performance. As

proposed in [12], we consider a predicted boundary as true positive

if it occurs within the tolerance(tol) neighborhood of a ground truth
boundary, while taking into consideration that this ground truth

boundary has not already been matched to a predicted boundary

before. Analogously, all the ground truth boundaries, for which no

frame within its tol range has been predicted, are referred to as

false negative. We also evaluate our method based on the number

of segments predicted. The metric is used to show reduction in

over-segmentation achieved for video data using our method.

4.3 Comparative Evaluation
For comparison on video datasets, we pick two representative tech-

niques to compare against, viz CES [12] and TCFPN [17]. We also

compare against ADWIN [7] which is based on unsupervised con-

cept drift detection but does not handle multivariate data or corre-

lated samples. For comparison with ADWIN, we pretend the data

is uncorrelated and convert a feature vector into a single scalar by

taking its ℓ2 norm. We ignore the SR-Clustering [14] for the video

datasets because it doesn’t scale for day-long video sequences.

Since many of the approaches we compare against were origi-

nally targeted for photo-streams and not videos, therefore, to ensure

a fair comparison, we prepare two configurations for each dataset.

In the first configuration, we resample a video at 2 frames per

minute, thereby making it resemble a photo-stream. In the second

configuration, each input video is resampled at 5fps to match the

lowest temporal resolution of all the datasets. For photo-stream

datasets, we also compare with SR-Clustering [14]. Table 2 shows

the quantitative evaluation based on F-measure for tol = 750 for

video datasets. We notice significant performance improvement

over all the state of the art approaches as these techniques fail to

handle the daylong video sequences.

Fig 5 shows a qualitative visualization of the comparison between

various state of the art techniques and the proposed approach. The

bar chart shows the frames selected as a boundary by different

techniques for a 30 minutes clip. It is clear that the state of the art

techniques severely over-segment all the video sequence datasets

due to frequent scene changes accompanying the sharp head mo-

tion of the wearer. The images above each of the bar charts show

representative frames from a short video segment from each of

the clips. The boundaries selected by each technique are marked

by thick colored lines between the frames. This is for visual com-

parison of the frames where different techniques choose to create

a boundary. From the figure, we can observe that the proposed

approach doesn’t over-segment and precisely locates the temporal

boundaries.

Table 3 shows the F-measure for tol = 5 for photo-stream

datasets (EDUB-Seg as well as all the video datasets down-sampled

to photo-streams as described earlier). For photo-stream datasets

also we show considerable improvement. We report 13.74%, 24.42%,

and 7.43% improvement in F-measure for HUJI, UTEgo, and Disney

datasets respectively, however, for EDUB-Seg20 we under-perform

marginally as CES [12] uses bidirectional features, whereas we use

uni-directional features to maintain the online streaming mode

property of our technique. Fig 6 shows the visualization for photo-

stream datasets. The first row shows the visualization for the EDUB-

Seg20 dataset where the CES [12] performs competitively. For the

HUJI dataset proposed method performs better than the CES [12].

4.4 Online Streaming vs Recorded Video
Our algorithm can be potentially used in the online streaming

mode as well. Recall that for detecting a temporal boundary, we

take a window w , split it at time instant t , in two windows w1

andw2, and then find the difference of means. Therefore, we effec-

tively find the temporal boundary at t after looking atw2 as well.

Datasets High Medium Low

UTEgo 2m19s 3m08s 3m29s

Disney 1m77s 2m54s 3m87s

This can be seen as detect-

ing a boundary with a cer-

tain latency. Table on the right

shows the average latency of

our algorithm vs the average

segment length in the video.

5 CONCLUSION
In this paper, we have introduced a novel, principled, and theoreti-

cally justified technique for temporal segmentation of egocentric

videos. We have adapted the univariate concept drift for i.i.d. data

to multivariate correlated data using the adaptive windowing tech-

nique. We demonstrate the results on long videos as well as photo-

stream datasets to prove the efficacy of the proposed approach.

We have also shown that the adaptive windowing technique can

generate superior results in video temporal segmentation when

compared to the state-of-the-art deep CNN/LSTM models.
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